Physicists Claim Neutrons May Travel to Parallel World

An anomaly in the behavior of ordinary particles may point to the existence of mirror particles that could be candidates for dark matter responsible for the missing mass of the Universe, a team of theoretical physicists has claimed.

Quark structure of a neutron (Arpad Horvath)

In a paper, published in European Physical Journal C, the team hypothesized the existence of mirror particles to explain the anomalous loss of neutrons observed experimentally. The existence of such mirror matter had been suggested in various scientific contexts some time ago, including the search for suitable dark matter candidates.

Dr Zurab Berezhiani and Dr Fabrizio Nesti, theoretical physicists at the University of l’Aquila, Italy, reanalyzed the experimental data obtained by the research group of Dr Anatoly Serebrov at the Institut Laue-Langevin, France. It showed that the loss rate of very slow free neutrons appeared to depend on the direction and strength of the magnetic field applied. This anomaly could not be explained by known physics.

“It could be interpreted in the light of a hypothetical parallel world consisting of mirror particles,” Dr Berezhiani said.

“Each neutron would have the ability to transition into its invisible mirror twin, and back, oscillating from one world to the other. The probability of such a transition happening was predicted to be sensitive to the presence of magnetic fields, and could therefore be detected experimentally.”

This neutron-mirror-neutron oscillation could occur within a timescale of a few seconds. The possibility of such a fast disappearance of neutrons – much faster than the ten-minute long neutron decay – albeit surprising, could not be excluded by existing experimental and astrophysical limits.

This interpretation is subject to the condition that the earth possesses a mirror magnetic field on the order of 0.1 Gauss. Such a field could be induced by mirror particles floating around in the galaxy as dark matter. Hypothetically, the earth could capture the mirror matter via some feeble interactions between ordinary particles and those from parallel worlds.

_______

Bibliographic information: Berezhiani Z., Nesti F. 2012. Magnetic anomaly in UCN trapping: signal for neutron oscillations to parallel world? European Physical Journal C 72: 1974; doi: 10.1140/epjc/s10052-012-1974-5