Australian Study Challenges Big Bang Theory

A team of theoretical physicists at the University of Melbourne and RMIT University has proposed that the start of the Universe should be modeled not as a Big Bang but more like water freezing into ice.

An artist’s concept of the expansion of the Universe (NASA / WMAP Science Team)

The team has suggested that by investigating the cracks and crevices common to all crystals – including ice – our understanding of the nature of the Universe could be revolutionized.

“Current theorizing is the latest in a long quest by humans to understand the origins and nature of the Universe,” said Dr James Quach of the University of Melbourne’s School of Physics, who led the study published in the journal Physical Review D (arXiv.org version).

“Ancient Greek philosophers wondered what matter was made of: was it made of a continuous substance or was it made of individual atoms?” he said. “With very powerful microscopes, we now know that matter is made of atoms.”

“Thousands of years later, Albert Einstein assumed that space and time were continuous and flowed smoothly, but we now believe that this assumption may not be valid at very small scales.”

“A new theory, known as Quantum Graphity, suggests that space may be made up of indivisible building blocks, like tiny atoms. These indivisible blocks can be thought about as similar to pixels that make up an image on a screen. The challenge has been that these building blocks of space are very small, and so impossible to see directly.”

The physicists believe they may have figured out a way to see them indirectly.

“Think of the early Universe as being like a liquid,” Dr Quach said. “Then as the Universe cools, it ‘crystallizes’ into the three spatial and one time dimension that we see today. Theorized this way, as the Universe cools, we would expect that cracks should form, similar to the way cracks are formed when water freezes into ice.”

Co-author Prof Andrew Greentree of RMIT University said some of these defects might be visible.

“Light and other particles would bend or reflect off such defects, and therefore in theory we should be able to detect these effects,” he said.

The team has calculated some of these effects and if their predictions are experimentally verified, the question as to whether space is smooth or constructed out of tiny indivisible parts will be solved once and for all.

_______

Bibliographic information: James Quach et al. 2012. Domain structures in quantum graphity. Phys. Rev. D 86, 044001; doi: 10.1103/PhysRevD.86.044001